

JS8 and JS8Call

Telemetry and Messaging

A JS8 to APRS Gateway Receiver

Paul Elliott / WB6CXC

HF Telemetry
● Drift-buoy project needs a good way to transmit data to shore-based

server.

● 40 meters, 30 meters, and 20 meters are appropriate bands for
worldwide paths.

● 30m HF APRS has necessary features, but coding is far from
optimum for error-prone weak-signal conditions.

● HF WSPR has good low-level characteristics and a good worldwide
receiving / reporting infrastructure. It is being used for some
telemetry but with a very limited and inflexible data format.

● FT8 has good low-level characteristics but a poor receiving / reporting
infrastructure. It also has very limited data capability.

● JS8Call is a new mode, derived from FT8

– It includes Forward Error Correction and is optimized for weak-
signal conditions.)

– It provides a flexible data format and APRS interface.

JS8Call

● Created by Jordan Sherer / KN4CRD

● Runs on Windows, Mac OSX, Raspberry Pi, Desktop
linux

● The program is now in general release, see
www.js8call.com

http://www.js8call.com/
http://www.js8call.com/

JS8Call
● JS8Call was previously named FT8Call.

● Proposed July 2017, first program release July 2018

● JS8Call uses a custom FT8 modulation called JS8 (Jordan
Sherer designed 8-FSK modulation). This is the base RF
transport.

● JS8Call has a “directed calling” protocol laid on top of the
base RF transport to support free-form and directed
message passing.

● Uses a keyboard messaging style interface.

● Provides API for remote and programmatic interface.

● Supports messaging to APRS

– Position report, telemetry (etc), text msg, email.

JS8Call Features
● Lots of good features for actual real-time free-

form QSOs and general communications.
● Has mailbox capability so messages can be

stored and automatically delivered.
● Messages can be relayed from station to station.
● Stations can be queried for their “heard” list,

making relay routes easier to manage.

– No automatic routing (yet)
● Periodic “Heartbeat” transmissions, and auto-

ACKs help provide network status information.

JS8Call Suitability
● JS8Call was created for human keyboard-keyboard

contacts, but it also has the necessary fundamental
characteristics to provide a reliable method for low-speed
digital communications of arbitrary data.

● But can it provide a receiving infrastructure? Will it wither
on the vine as many previous digital modes have?

● FT8 is the most popular HF digital mode in use now, and it
appears that many FT8 users are trying JS8. More than
10,000 hams have downloaded the latest version of the
JS8Call program.

● A mix of occasional operators and 24/7 gateway stations
should provide good coverage. Not all operators will be
relaying APRS, but some will.

JS8 Activity

● All bands, 24-hours
● 40 meters most active, then 20 meters

http://www.pskreporter.info/

30 Meter JS8 Activity

● 24-hours
● Not a whole lot of activity, but still useful

30 Meter WSPR Activity

● 24-hours
● We can see that propagation isn't the issue

Building a JS8 Gateway Station
● More 24/7 Stations!
● TX/RX is great, but RX-only is still useful
● Goal: Cheap, Easy, Good

– Pick any two?

● 30 Meters (10.130 MHz USB)
● Cheap / Easy / (Good Enough) Rcv-Only
● I now have three 24/7 Cheap/Easy receive-only

gateway stations on 30 meters: Friday Harbor
WA, Occidental CA, and Anjala Finland

Receive-Only
Cheap / Easy / (Good Enough)

● RTL-SDR Blog Version 3: $22
● Raspberry Pi 3B: $34
● 8G Micro SD Card: $4
● RF Preamp: $11
● 10 MHz Front-End Filter: Homebrew, $5

– Including preamp circuit: $7

● USB Power Adaptor: $10
● SMA Connectors, adaptors: $10
● Total: $96

– Not including antenna and coax

$22 Software Defined Receiver

RTL-SDR BLOG v3
● 1PPM TCXO

● Software-switchable bias tee (for external preamp)

● Direct-sampling option for limited HF operation

– 28.8 MHz sample clock and non-quadrature output
make external filtering mandatory, due to Nyquist
aliasing above 14.4 MHz

● 8-bit A/D converter limits receiver dynamic range

● Actually works quite well for 30-meter (10 MHz) band
● https://www.amazon.com/RTL-SDR-Blog-RTL2832U-Software-Defined/dp/B0129EBDS2

SDR Sampling and Conversion

Spurious Responses due to Aliasing

● 28.8 MHz sample clock, 14.4 MHz Nyquist frequency

● Tuned to 10.0 MHz:

– Alias at 18.8 MHz, 38.8 MHz, 47.6 MHz (etc.)
● Tuned to 14.0 MHz:

– Alias at 14.8 MHz, 42.8 MHz, 43.6 MHz (etc.)
● RTL-SDR has no useful filtering at these frequencies

Front-End Filter

● 10 MHz bandpass filter with 18 MHz Notch

● 6dB loss due to design and component Q

● -70dB at first alias frequency

● Values and design may be different than shown

$11.00 RF Preamp

● 100 Khz – 2 GHz, 30 dB gain

● With jumper (or resistor) bridging output capacitor, RTL-
SDR can provide power via bias-T

● Preamp makes up for loss in front-end filter

● https://www.amazon.com/gp/product/B01N2NJSGV

https://www.amazon.com/gp/product/B01N2NJSGV
https://www.amazon.com/gp/product/B01N2NJSGV

DSP on Raspberry Pi

CSDR
● csdr is a command line tool to carry out DSP

tasks for Software Defined Radio.
● It can be used to build simple signal processing

flow graphs, right from the command line.
● https://github.com/simonyiszk/csdr
● Need to play with time synchronization to

compensate for delay in DSP pipeline
– Using “Chrony” for this

https://github.com/simonyiszk/csdr
https://github.com/simonyiszk/csdr

Configuration of RTL-SDR v3
and DSP SSB Receiver

#!/bin/bash

if [$# -eq 1]

then

freq=$1

echo "frequency = $freq"

rtl_biast -b 1

rtl_sdr -s 1200000 -f `python -c "print float($freq + 100000)"` -D 2 - |

csdr convert_u8_f |

csdr shift_addition_cc 0.08333333333333 |

csdr fir_decimate_cc 25 0.05 HAMMING |

csdr bandpass_fir_fft_cc 0 0.5 0.05 |

csdr realpart_cf |

csdr agc_ff |

csdr limit_ff |

csdr convert_f_s16 |

aplay -v -r 48000 -f S16_LE -

else

echo "rtl-sdr-usb freq_in_Hz"

fi

https://www.rtl-sdr.com/tutorial-setting-up-a-low-cost-qrp-ft8-jt9-wspr-etc-monitoring-station-with-an-rtl-sdr-v3-and-raspberry-pi-3/

Receiver Performance

0 0.01 0.1 1 10 100
0

10

20

30

40

50

60

70

80

Input in microvolts
S

in
n

a
l/N

o
is

e
 R

a
tio

 d
B

● Receiver tuned to 10.000 MHz,
signal at 10.001 MHz giving
1KHz beat note

● Noise floor around 0.005 uV
(useful with low-gain antenna)

● Using “Audacity” program for
SNR analysis

● Still need to do strong-signal
overload (IMD) measurements

Raspberry Pi JS8 Receive Gateway

● RPi running SDR software and JS8Call

● Reports received signals to pskreporter.info

● Forwards APRS messages to APRS-IS

● Uses 15% - 30% CPU cycles of Rpi 3 B

– No heatsink required
● That box on the left is a passive antenna splitter for A/B receiver testing

Paper-Clip Transmitting Antenna

● Receiver about 100 yards from
transmitter.

● <1W output (if matched)
● Sending JS8 APRS email:

 APRS::EMAIL-2 :ME HELLO WORLD{02}

● “ME” is a shortcut for my email
address

● This takes four JS8 frames to send
(4 x 15 seconds)

● http://www.aprs-is.net/email.aspx

WB6CXC/FIN
Rcv-only gateway in Finland

● Summer house in Finland,
about 130km ENE of Helsinki

● Station in upstairs utility closet

● Indoor antenna, 30m dipole
tacked along ceiling trim

● Motorcycle battery backup

WB6CXC/FIN
Rcv-only gateway in Finland

What Next?
● This gateway receiver design could be used below 10

MHz with the appropriate front-end filter

● 14 MHz is uncomfortably close to the 14.4 MHz
Nyquist frequency, would require a very fancy anti-
aliasing filter

● 18 MHz and 21 MHz operation should be practical, will
have sideband inversion (which can be fixed in the
demodulation software)

● A full transceiver design will probably not use a SDR
receiver, but instead a use hybrid analog / digital
approach

Gateway Transceiver
● Receiver

– Using “Tayloe Quadrature Sampling Mixer”

– Analog low-pass filters with matched gain and delay

– Two-channel A-D Converter

– Software SSB demodulation similar to SDR
gateway

● Transmitter

– Direct digital generation of 8-FSK JS8 signal

– 10W Class-E power amplifier, filters
● A single clock generator chip can provide receiver and

transmitter clocks

Links
● http://js8call.com/

● https://www.rtl-sdr.com/tutorial-setting-up-a-low-cost-qrp-ft8-jt9-wspr-etc-monitoring-station-with-an-rtl-sdr-v3-and-raspberry-pi-3/

● https://github.com/simonyiszk/csdr

● http://www.aprs-is.net/email.aspx

● https://www.amazon.com/RTL-SDR-Blog-RTL2832U-Software-Defined/dp/B0129EBDS2

● https://www.amazon.com/gp/product/B01N2NJSGV

http://js8call.com/
https://www.rtl-sdr.com/tutorial-setting-up-a-low-cost-qrp-ft8-jt9-wspr-etc-monitoring-station-with-an-rtl-sdr-v3-and-raspberry-pi-3/
https://github.com/simonyiszk/csdr
http://www.aprs-is.net/email.aspx
https://www.amazon.com/RTL-SDR-Blog-RTL2832U-Software-Defined/dp/B0129EBDS2
https://www.amazon.com/gp/product/B01N2NJSGV
http://js8call.com/
https://www.rtl-sdr.com/tutorial-setting-up-a-low-cost-qrp-ft8-jt9-wspr-etc-monitoring-station-with-an-rtl-sdr-v3-and-raspberry-pi-3/
https://github.com/simonyiszk/csdr
http://www.aprs-is.net/email.aspx
https://www.amazon.com/RTL-SDR-Blog-RTL2832U-Software-Defined/dp/B0129EBDS2
https://www.amazon.com/gp/product/B01N2NJSGV

JS8 and JS8Call

Telemetry and Messaging

A JS8 to APRS Gateway Receiver

Paul Elliott / WB6CXC

In my previous presentation I mentioned the telemetry
drift-buoy I wanted to design and set free to roam the
oceans of the world (and I still want to!) The buoy
will have a low-power (<10W) transmitter, sending
data in the HF ham bands, probably 30 meters (10
MHz.)

In order for this to work, there needs to be a network of
receivers that will pick up these transmissions and
forward the data back to me, or at least to a place
where it can be retrieved.

HF Telemetry
● Drift-buoy project needs a good way to transmit data to shore-based

server.

● 40 meters, 30 meters, and 20 meters are appropriate bands for
worldwide paths.

● 30m HF APRS has necessary features, but coding is far from
optimum for error-prone weak-signal conditions.

● HF WSPR has good low-level characteristics and a good worldwide
receiving / reporting infrastructure. It is being used for some
telemetry but with a very limited and inflexible data format.

● FT8 has good low-level characteristics but a poor receiving / reporting
infrastructure. It also has very limited data capability.

● JS8Call is a new mode, derived from FT8

– It includes Forward Error Correction and is optimized for weak-
signal conditions.)

– It provides a flexible data format and APRS interface.

HF APRS, and WSPR were possible candidates, but
each had serious drawbacks.

JS8 / JS8-Call has now come on the scene in a big
way, and looks like a winner.

JS8Call

● Created by Jordan Sherer / KN4CRD

● Runs on Windows, Mac OSX, Raspberry Pi, Desktop
linux

● The program is now in general release, see
www.js8call.com

JS8Call
● JS8Call was previously named FT8Call.

● Proposed July 2017, first program release July 2018

● JS8Call uses a custom FT8 modulation called JS8 (Jordan
Sherer designed 8-FSK modulation). This is the base RF
transport.

● JS8Call has a “directed calling” protocol laid on top of the
base RF transport to support free-form and directed
message passing.

● Uses a keyboard messaging style interface.

● Provides API for remote and programmatic interface.

● Supports messaging to APRS

– Position report, telemetry (etc), text msg, email.

While JS8 modulation and coding is very similar to
FT8, the two modes are not compatible. This is by
design, since FT8 is built around fixed fields,
designed for “contest style” QSOs, where a minimum
set of standardized fields can be carried over a
single 15-second frame.

JS8 instead provides a few fixed fields, but the bulk of
the message space is available for free-format text,
and allows multiple frames to be chained in order to
send messages of an arbitrary size.

Using JS8 to send APRS email:
@ALLCALL APRS::EMAIL-2 :ME msg body{xx}

Fixed-length fields are used for APRS header

JS8Call Features
● Lots of good features for actual real-time free-

form QSOs and general communications.
● Has mailbox capability so messages can be

stored and automatically delivered.
● Messages can be relayed from station to station.
● Stations can be queried for their “heard” list,

making relay routes easier to manage.

– No automatic routing (yet)
● Periodic “Heartbeat” transmissions, and auto-

ACKs help provide network status information.

Of course you can always just call CQ and talk (type)
to each other. Most of the JS8 activity is just this.

JS8Call Suitability
● JS8Call was created for human keyboard-keyboard

contacts, but it also has the necessary fundamental
characteristics to provide a reliable method for low-speed
digital communications of arbitrary data.

● But can it provide a receiving infrastructure? Will it wither
on the vine as many previous digital modes have?

● FT8 is the most popular HF digital mode in use now, and it
appears that many FT8 users are trying JS8. More than
10,000 hams have downloaded the latest version of the
JS8Call program.

● A mix of occasional operators and 24/7 gateway stations
should provide good coverage. Not all operators will be
relaying APRS, but some will.

JS8-Call uses built-in Huffman compression for plain
upper-case text, optimized for standard English letter
frequency as used in ham QSOs. There is also
some sort of “phrase” compression – the details are
unclear (actually, it's all revealed in the public-domain
code, I just haven't studied it.)

The Huffman compression means that random data
(such as telemetry values) will have to be mapped
into the 44-character Huffman table, resulting in a
slight expansion rather than compression. Mapping
random data into the first 38 table values looks to be
optimum, about an 8% expansion.

Huffman compression uses fewer bits for more
commonly used characters. Much like Morse code.

JS8 Activity

● All bands, 24-hours
● 40 meters most active, then 20 meters

Looking at www.pskreporter.info, we can see a recent
day's worth of JS8 activity. Not all stations report to
pskreporter, but many do.

I don't know how many also forward to APRS, but I
assume it's a small percentage since few use this
service and a passcode is needed to do this. The
passcode is easy to get, but it is still an additional
step

The APRS passcode does not provide for security or
authentication. Other means are required for this.
For telemetry and remote command, some method
of authentication should used.

30 Meter JS8 Activity

● 24-hours
● Not a whole lot of activity, but still useful

30 Meter WSPR Activity

● 24-hours
● We can see that propagation isn't the issue

Building a JS8 Gateway Station
● More 24/7 Stations!
● TX/RX is great, but RX-only is still useful
● Goal: Cheap, Easy, Good

– Pick any two?

● 30 Meters (10.130 MHz USB)
● Cheap / Easy / (Good Enough) Rcv-Only
● I now have three 24/7 Cheap/Easy receive-only

gateway stations on 30 meters: Friday Harbor
WA, Occidental CA, and Anjala Finland

So having more JS8 30-meter activity would be good.
For my telemetry needs, having more receivers that
gateway to APRS is the big thing, but without people
transmitting, few will put up receivers.

A full gateway transceiver would be great, and it's easy
to put one together using a ham transceiver and a
computer. But few people want to tie up their main
ham rig for a 24/7 gateway.

How to build a gateway that could be put into 24/7
service? Here I describe an inexpensive SDR
receiver solution.

A low-cost full transceiver design is also slowly being
developed.

Receive-Only
Cheap / Easy / (Good Enough)

● RTL-SDR Blog Version 3: $22
● Raspberry Pi 3B: $34
● 8G Micro SD Card: $4
● RF Preamp: $11
● 10 MHz Front-End Filter: Homebrew, $5

– Including preamp circuit: $7

● USB Power Adaptor: $10
● SMA Connectors, adaptors: $10
● Total: $96

– Not including antenna and coax

There are better-performing SDR receivers out there
(SDRPlay, Funcube, others), but these cost >$100. I
wanted to see if the much cheaper RTL-SDR unit
might work acceptably.

As with my Raspberry Pi WSPR transmitter, the
antenna is perhaps the most expensive part of the
project. Fortunately, I have hundreds of feet of old
#10 wire and coax, and a box of connectors. And
trees.

$22 Software Defined Receiver

RTL-SDR BLOG v3
● 1PPM TCXO

● Software-switchable bias tee (for external preamp)

● Direct-sampling option for limited HF operation

– 28.8 MHz sample clock and non-quadrature output
make external filtering mandatory, due to Nyquist
aliasing above 14.4 MHz

● 8-bit A/D converter limits receiver dynamic range

● Actually works quite well for 30-meter (10 MHz) band
● https://www.amazon.com/RTL-SDR-Blog-RTL2832U-Software-Defined/dp/B0129EBDS2

SDR Sampling and Conversion

This is the analog to digital converter and post-
conversion processing inside the back-end chip used
in the RTL-SDR (and most other SDRs). There is
also a front-end down-converter in these SDRs, but
in the direct-sampling mode this downconverter is
bypassed and the RF is routed directly to the A/D
converter, which samples the input at 28.8 MHz.

The converter output is re-sampled by a quadrature
mixer, and the I/Q paths are further filtered. They are
then further down-sampled, filtered, and sent to the
USB interface. USB data rate is set to 1.2
Mbytes/second.

The 28.8 MHz sampling gives rise to spurious
responses (Nyquist)

Spurious Responses due to Aliasing

● 28.8 MHz sample clock, 14.4 MHz Nyquist frequency

● Tuned to 10.0 MHz:

– Alias at 18.8 MHz, 38.8 MHz, 47.6 MHz (etc.)
● Tuned to 14.0 MHz:

– Alias at 14.8 MHz, 42.8 MHz, 43.6 MHz (etc.)
● RTL-SDR has no useful filtering at these frequencies

Alias frequencies are at (Fs * x) +/- Ftune, x = 1,2,3,...

Fs = sample clock frequency
Ftune = frequency receiver is tuned to

You can also use one of these alias frequencies as the
desired signal – this is called “undersampling”

Front-End Filter

● 10 MHz bandpass filter with 18 MHz Notch

● 6dB loss due to design and component Q

● -70dB at first alias frequency

● Values and design may be different than shown

To reduce potential spurious responses, I built a front-
end filter. I decided to give it a bandpass centered at
10.1 MHz, with a sharp null at the first image of 18.8
MHz. Given the fairly low dynamic range of the 8-bit
A-D converter in the SDR, it seemed a good idea to
at least somewhat filter out the lower frequencies as
well.

Due to my construction techniques, and possible
component resonances, the filter also showed a
pronounced null at 25 MHz. It wasn't due to the chip
inductors; changing these to hand-wound toroids
didn't change a thing. No harm done, but the higher-
frequency rejection probably suffers because of this.

The filter response plot may be from a design with one
more section. I tried a lot of filter designs.

$11.00 RF Preamp

● 100 Khz – 2 GHz, 30 dB gain

● With jumper (or resistor) bridging output capacitor, RTL-
SDR can provide power via bias-T

● Preamp makes up for loss in front-end filter

● https://www.amazon.com/gp/product/B01N2NJSGV

This is a Chinese board with a single Darlington-pair
preamp. I jumpered the output capacitor so the SDR
bias-t could directly power the preamp. Depending
on the specific preamp used, a bypassed series
resistor may be needed for bias-t powering.

The preamp could easily be included in the filter circuit.
 Parts-cost: a couple of dollars, more than offset by
the fewer connectors required.

DSP on Raspberry Pi

CSDR
● csdr is a command line tool to carry out DSP

tasks for Software Defined Radio.
● It can be used to build simple signal processing

flow graphs, right from the command line.
● https://github.com/simonyiszk/csdr
● Need to play with time synchronization to

compensate for delay in DSP pipeline
– Using “Chrony” for this

Configuration of RTL-SDR v3
and DSP SSB Receiver

#!/bin/bash

if [$# -eq 1]

then

freq=$1

echo "frequency = $freq"

rtl_biast -b 1

rtl_sdr -s 1200000 -f `python -c "print float($freq + 100000)"` -D 2 - |

csdr convert_u8_f |

csdr shift_addition_cc 0.08333333333333 |

csdr fir_decimate_cc 25 0.05 HAMMING |

csdr bandpass_fir_fft_cc 0 0.5 0.05 |

csdr realpart_cf |

csdr agc_ff |

csdr limit_ff |

csdr convert_f_s16 |

aplay -v -r 48000 -f S16_LE -

else

echo "rtl-sdr-usb freq_in_Hz"

fi

This is largely taken from a tutorial on the RTL-SDR
website:

https://www.rtl-sdr.com/tutorial-setting-up-a-low-cost-qrp-ft8-jt9-wspr-etc-monitoring-station-with-an-rtl-sdr-v3-and-raspberry-pi-3/

The design in the tutorial used “ncat” to send the SDR
output to multiple demodulating applications. I
simplified it for single-channel use. Also, I had
dropout problems with the audio piping using
Pulseaudio. Instead, I use “aplay”. I also narrowed
the digital bandpass filter of the audio SSB
demodulator, giving it a 5 Khz cutoff.

Receiver Performance

0 0.01 0.1 1 10 100
0

10

20

30

40

50

60

70

80

Input in microvolts

S
in

n
a

l/N
o

is
e

 R
a

tio
 d

B

● Receiver tuned to 10.000 MHz,
signal at 10.001 MHz giving
1KHz beat note

● Noise floor around 0.005 uV
(useful with low-gain antenna)

● Using “Audacity” program for
SNR analysis

● Still need to do strong-signal
overload (IMD) measurements

While this sensitivity sounds amazingly good, it's still
far from the fundamental limits of a 50-Ohm resistor
at room-temperature. Still, perhaps I don't really
need the preamp. Early tests made me think the
SDR was a bit “deaf”, but I should re-test this to
verify. Excess gain does no good, and can cause
overload problems.

I really want a “SNR” program so I can see real-time
results, rather than sample the signal with Audacity
and then use the FFT capability to see what I got.

I also want a dual-signal source for overload
measurements. Shouldn't be too hard to put
together.

Raspberry Pi JS8 Receive Gateway

● RPi running SDR software and JS8Call

● Reports received signals to pskreporter.info

● Forwards APRS messages to APRS-IS

● Uses 15% - 30% CPU cycles of Rpi 3 B

– No heatsink required
● That box on the left is a passive antenna splitter for A/B receiver testing

With a Power Over Ethernet adaptor and a
weatherproof case, this entire gateway could be
located outside at the antenna, fed by an ethernet
cable.

For receive-only operation, a short untuned antenna
might be sufficient.

Some sort of transient protection on the RF and
Ethernet connections would be a good idea.

Using “RealVNC server” on the RPi (included in the
Raspbian image), and “RealVNC Client” on the
remote computers. No monitor or keyboard needed
at the Rpi. Monitor and control from anywhere. Up
to five servers for free.

Paper-Clip Transmitting Antenna

● Receiver about 100 yards from
transmitter.

● <1W output (if matched)
● Sending JS8 APRS email:

 APRS::EMAIL-2 :ME HELLO WORLD{02}

● “ME” is a shortcut for my email
address

● This takes four JS8 frames to send
(4 x 15 seconds)

● http://www.aprs-is.net/email.aspx

Over the air testing of the gateway, using JS8Call on a
Win10 PC, connected to an ICOM IC7200 or IC7300
transceiver, with power dialed down to minimum, into
a mistuned antenna, or using paper-clip antenna.

Gateway receiver has 10m dipole at a small distance
from transceiver antenna.

Also used antenna feeding a splitter, gateway . RPi on
one port, Icom / Win computer on other. Ran both
receivers for an hour, compared log results.
Gateway did as well as Icom.

Some interesting differences in SNR reports, Icom
better with strong signals, SDR better with weak
ones. Each of my three receiver locations are in a
quiet RF environment.

WB6CXC/FIN
Rcv-only gateway in Finland

● Summer house in Finland,
about 130km ENE of Helsinki

● Station in upstairs utility closet

● Indoor antenna, 30m dipole
tacked along ceiling trim

● Motorcycle battery backup

Installed gateway in Finland on May 8, 2019. Probably
not a good spot for receiving a Pacific Ocean buoy
signal, but I wanted to see how it worked anyway,
and somebody might find it useful.

Antenna snakes back and forth, tacked up so it won't
annoy my wife too much.

I had trouble with USB power to RPi, discovered that
not all micro-USB cables and power adaptors are
created equal. Found some that work, but eventually
replaced plug-in power adaptor with motorcycle
battery / charger / 12V USB adaptor.

WB6CXC/FIN
Rcv-only gateway in Finland

Receiver shows up in pskreporter, first stations
received were in Italy and Romania

I can monitor and control this station from anywhere in
the world using VNC and the internet.

“WB6CXC/FIN” is not a real callsign, just an arbitrary
station identifier for pskreporter and APRS. This is
not a transmitter so no official callsign or reciprocal
license arrangement is needed.

What Next?
● This gateway receiver design could be used below 10

MHz with the appropriate front-end filter

● 14 MHz is uncomfortably close to the 14.4 MHz
Nyquist frequency, would require a very fancy anti-
aliasing filter

● 18 MHz and 21 MHz operation should be practical, will
have sideband inversion (which can be fixed in the
demodulation software)

● A full transceiver design will probably not use a SDR
receiver, but instead a use hybrid analog / digital
approach

For an extra $100, a better SDR would allow operation
over the full range of ham bands.

The direct digital FSK synthesis method is probably the
least expensive approach for QRP transmitter
design. Some harmonic filtering is required, but if
the synthesizer divider values are chosen carefully
the signals are otherwise clean enough.

The Si5351 clock synth chip has three outputs, one
used for the transmitter, and the remaining two used
in the receiver circuit. This leads to an inexpensive
transceiver with decent performance.

Gateway Transceiver
● Receiver

– Using “Tayloe Quadrature Sampling Mixer”
– Analog low-pass filters with matched gain and delay
– Two-channel A-D Converter
– Software SSB demodulation similar to SDR

gateway
● Transmitter

– Direct digital generation of 8-FSK JS8 signal
– 10W Class-E power amplifier, filters

● A single clock generator chip can provide receiver and
transmitter clocks

The Tayloe mixer is a high dynamic-range zero-IF
(direct conversion) design, using analog
transmission gates driven by quadrature clocks It
has analog quadrature outputs (I/Q) which can be
converted to USB or LSB outputs using analog or
digital mixing techniques. This design would use
digital methods. (Tayloe doesn't have to be zero-IF,
but usually is.)

The chosen A-D converter samples at 192 Khz, so
matched analog filters are required at the input to
eliminate aliasing.

Power Over Ethernet may have difficulty feeding a
10W transmitter.

Links
● http://js8call.com/

● https://www.rtl-sdr.com/tutorial-setting-up-a-low-cost-qrp-ft8-jt9-wspr-etc-monitoring-station-with-an-rtl-sdr-v3-and-raspberry-pi-3/

● https://github.com/simonyiszk/csdr

● http://www.aprs-is.net/email.aspx

● https://www.amazon.com/RTL-SDR-Blog-RTL2832U-Software-Defined/dp/B0129EBDS2

● https://www.amazon.com/gp/product/B01N2NJSGV

